Mechanisms of guanosine triphosphate hydrolysis by Ras and Ras-GAP proteins as rationalized by ab initio QM/MM simulations.

نویسندگان

  • Bella L Grigorenko
  • Alexander V Nemukhin
  • Maria S Shadrina
  • Igor A Topol
  • Stanley K Burt
چکیده

The hydrolysis reaction of guanosine triphosphate (GTP) by p21(ras) (Ras) has been modeled by using the ab initio type quantum mechanical-molecular mechanical simulations. Initial geometry configurations have been prompted by atomic coordinates of the crystal structure (PDBID: 1QRA) corresponding to the prehydrolysis state of Ras in complex with GTP. Multiple searches of minimum energy geometry configurations consistent with the hydrogen bond networks have been performed, resulting in a series of stationary points on the potential energy surface for reaction intermediates and transition states. It is shown that the minimum energy reaction path is consistent with an assumption of a two-step mechanism of GTP hydrolysis. At the first stage, a unified action of the nearest residues of Ras and the nearest water molecules results in a substantial spatial separation of the gamma-phosphate group of GTP from the rest of the molecule (GDP). This phase of hydrolysis process proceeds through the low barrier (16.7 kcal/mol) transition state TS1. At the second stage, the inorganic phosphate is formed in consequence of proton transfers mediated by two water molecules and assisted by the Gln61 residue from Ras. The highest transition state at this segment, TS3, is estimated to have an energy 7.5 kcal/mol above the enzyme-substrate complex. The results of simulations are compared to the previous findings for the GTP hydrolysis in the Ras-GAP (p21(ras)-p120(GAP)) protein complex. Conclusions of the modeling lead to a better understanding of the anticatalytic effect of cancer causing mutation of Gln61 from Ras, which has been debated in recent years.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of the arginine finger in Ras.RasGAP revealed by QM/MM calculations.

In the Ras.Ras.GAP complex, hydrolysis of guanosine triphosphate is strongly accelerated GAP as compared to Ras alone. This is largely attributed to the arginine finger R789(GAP) pointing to AlF(x) in the transition state analogue. We performed QM/MM simulations where triphosphate was treated using the quantum mechanical method of density functional theory, while the protein complex and water e...

متن کامل

Toward Determining ATPase Mechanism in ABC Transporters: Development of the Reaction Path-Force Matching QM/MM Method.

Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are ubiquitous ATP-dependent membrane proteins involved in translocations of a wide variety of substrates across cellular membranes. To understand the chemomechanical coupling mechanism as well as functional asymmetry in these systems, a quantitative description of how ABC transporters hydrolyze ATP is needed. Complementary to exp...

متن کامل

The GTPase hGBP1 converts GTP to GMP in two steps via proton shuttle mechanisms† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc02045c Click here for additional data file.

GTPases play a crucial role in the regulation of many biological processes by catalyzing the hydrolysis of GTP into GDP. The focus of this work is on the dynamin-related large GTPase human guanine nucleotide binding protein-1 (hGBP1) which is able to hydrolyze GTP even to GMP. Here, we studied the largely unknown mechanisms of both GTP and GDP hydrolysis steps utilizing accelerated ab initio QM...

متن کامل

Ras and GTPase-activating protein (GAP) drive GTP into a precatalytic state as revealed by combining FTIR and biomolecular simulations.

Members of the Ras superfamily regulate many cellular processes. They are down-regulated by a GTPase reaction in which GTP is cleaved into GDP and P(i) by nucleophilic attack of a water molecule. Ras proteins accelerate GTP hydrolysis by a factor of 10(5) compared to GTP in water. GTPase-activating proteins (GAPs) accelerate hydrolysis by another factor of 10(5) compared to Ras alone. Oncogenic...

متن کامل

Theoretical IR spectroscopy based on QM/MM

The GTPase Ras p21 is a crucial switch in cellular signal transduction. FTIR spectra of the substrate guanosine triphosphate (GTP) show remarkable changes when it binds to the enzyme. The reduced band widths indicate that the flexible GTP molecule is guided by the protein into a preferred conformation. The delocalized phosphate vibrations of unbound GTP become localized. The frequency shifts sh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proteins

دوره 66 2  شماره 

صفحات  -

تاریخ انتشار 2007